Характеристика жиров (липидов) и жирных кислот

Механизмы удлинения и десатурации жирных кислот

В биологических системах липиды распространены повсеместно и выполняют множество физиологических функций. Этот раздел посвящен обзору различных типов липидов и их функций, а также вопросам абсорбции пищевых жиров и транспортировки липидов. Кроме того, дано краткое описание разнообразных функций жирных кислот.

Липиды представляют собой гетерогенный класс соединений, нерастворимых в воде, но растворимых в органических растворителях. Типичная классификация липидов основана на особенностях их структуры и гидрофобности. Нейтральные липиды, которые включают триглицериды и эфиры стерола, являются гидрофобными. Сложные жиры обычно состоят из трех и более отдельных компонентов (например, глицерол плюс жирные кислоты плюс сахар- глицерол плюс жирные кислоты и/или фосфатаминогруппа) и обладают как гидрофобными, так и гидрофильными свойствами.

Сложные жиры подразделяют на фосфолипиды (например, фосфатидилхолин, фосфатидилэтаноламин) и глицеролипиды (например, сфинголипиды, церамиды и ганглиозиды). Триглицериды — липиды, наиболее часто встречающиеся в пище младенцев и взрослых, — состоят из остатков жирных кислот, этерифицированных с каждой из трех гидроксильных групп молекулы глицерола. Триглицериды накапливаются в жировой ткани. Моноглицериды и диглицериды образуются при расщеплении жиров или при метаболизме липидов в качестве промежуточных продуктов.

Фосфолипиды состоят из остатков двух жирных кислот, этерифицированных с двумя гидроксильными группами молекулы глицерола. Третья гидроксильная группа этерифицирована с фосфатом, который, в свою очередь, будучи этерифицированным с холином, этаноламином, серином или инозитолом, участвует в образовании фосфатидилхолина, фосфатидилэтаноламина, фосфатидилсерина и фосфатидилинозитола. Среди содержащих липиды соединений фосфолипиды являются наиболее распространенными компонентами клеточных мембран, а жировая ткань представляет собой основное депо триглицеридов.

Классификация основных жирных кислот

Числовая номенклатура
(общепринятая аббревиатура)
Тривиальное название
1. Насыщенные жирные кислоты:
а) Среднецепочечные
6:0
8:0
10:0
12:0
14:0

б) Длинноцепочечные
16:0
18:0


Капроновая
Каприловая
Каприновая
Лауриновая
Миристиновая

Пальмитиновая
Стеариновая
2. Мононенасыщенные жирные кислоты:
16:1 n-7
18:1 n-1
18:1 n-9
20:3 n-9
22:1 n-9

Пальмитолеиновая
Вакценовая
Олеиновая
Кислота Меда
Эруковая
3. Полиненасыщенные жирные кислоты:
а) Омега-6
18:2 n-6 (LA)
18:3 n-6 (GLA)

Длинноцепочечные
20:3 n-6 (DGLA)
20:4 n-6 (ARA)
22:4 n-6
22:5 n-6

б) Омега-3
18:3 n-3 (ALA)

Длинноцепочечные
20:4 n-3
20:5 n-3 (ЕРА)
22:5 n-3 (DPA)
22:6 n-3 (DHA)

Линолевая
у-Линоленовая

Дигомо-у-линоленовая
Арахидоновая






а-Линоленовая



Эйкозапентаеновая
Докозапентаеновая
Докозагексаеновая
*Обозначения n-7, n-9, n-6 и n-3 равнозначны омега-7, омега-9, омега-6 и омега-3 соответственно.


Сфинголипиды по своей структуре схожи с фосфоглицеридами, за исключением того что содержат сфингозин (аминоспирт с длинной ненасыщенной углеводородной цепью) и жирнокислотный ацильный остаток вместо двух жирнокислотных ацильных остатков, соединенных с основанием — глицеролом. К наиболее распространенным сфинголипидам относятся сфингомиелин, цереброзид и сульфатиды. Еще одной большой группой соединений, содержащих липиды, являются стеролы, среди которых наиболее распространен холестерол. Функциональные характеристики жирных кислот определяются длиной их углеродной цепи, степенью ненасыщенности и локализацией двойных связей.

Для обозначения жирных кислот часто используют запись, отражающую количество атомов углерода, количество двойных связей и количество атомов углерода, расположенных между концевой метильной группой и первой двойной связью.



Например, линолевая кислота (18:2 n-6) содержит 18 атомов углерода и 2 двойные связи, причем первая двойная связь расположена у 6-го атома углерода, если отсчитывать от концевой метильной группы. Наиболее распространенные жирные кислоты представлены в таблице. Числовую номенклатуру (например, 18:2 n-6) используют для обозначения жирных кислот, находящихся в тканях, или при описании путей их метаболизма, в то время как общее название (например, линолевая кислота) или аббревиатуру применяют для описания жирных кислот в составе пищи.

Видео: Прикольные химические реакции - получение, синтез жирных кислот из хозяйственного мыла

Липиды

Липиды пищи используются организмом человека в качестве источников энергии, «строительного материала», а также как биологически значимые структурные компоненты клеточных мембран. Поступление в организм липидов пищи способствует абсорбции жирорастворимых витаминов (A, D, Е и К). С пищей поступают такие липиды, как триглицериды, фосфолипиды, эфиры стерола и стеролы, а также другие сложные липиды. Для процессов переваривания, абсорбции, транспорта, хранения и утилизации липидов необходимо наличие в организме специальных переносчиков, поскольку липиды обладают свойством гидрофобности.

Видео: Липиды (жиры)

Две жирные кислоты, поступающие в организм с пищей, считаются незаменимыми. Это линолевая (LA- 18:2 n—6) и альфа-линоленовая (ALA- 18:3 n—3) кислоты. Все остальные жирные кислоты могут быть получены из пищи или из других жирных кислот или синтезированы в организме. Например, DHA (22:6 п—3) может поступать в организм непосредственно с пищей или быть получена из ALA 18:3 п-3 в результате серии реакций, направленных на удлинение и десатурацию, а также бета-окисление. ARA, ЕРА и DHA, которые являются одними из наиболее важных структурных и функциональных компонентов клеточных мембран, считаются физиологически незаменимыми.

Однако в настоящее время отсутствует единое мнение о том, относятся ли ARA, ЕРА и DHA к незаменимым или к условно незаменимым в диете. Проявленный в последние годы интерес к изучению омега-6 и омега-3 ПНЖК позволил выявить их биологическое значение в функционировании многих физиологических систем, включая сердечно-сосудистую, иммунную и центральную нервную системы.

Видео: Жирные кислоты

Источник: http://meduniver.com
Похожее