Ультразвуковые методы исследования. Физические основы ультразвуковой диагностики

Видео: Ультразвуковая анатомия сосудов шеи new

В настоящее время в клинической практике применяют эхографический метод, основанный на регистрации волн, отраженных от границ раздела сред с различным акустическим сопротивлением, и метод, основанный на эффекте Допплера, т.е. регистрации изменения частоты ультразвуковой волны, отраженной от движущихся границ между средами. Последняя методика позволяет получить информацию о гемодинамике органов и систем и применяется в основном для исследования сердца и сосудов.

При исследовании органов мочеполовой системы используется главным образом эхографический метод регистрации ультразвука, который по характеру воспроизведения разделяется на:

1) одномерную эхографию (А-метод), который позволяет получить информацию об объекте лишь в одном направлении (одном измерении) и, таким образом, не дает полного представления о форме и величине исследуемого объекта;
2) двухмерную эхографию (ультразвуковое сканирование, В-метод), который в отличие от одномерной позволяет получить двухмерное плоскостное изображение объекта в виде эхотомографического среза (скан);
3) УЗИ в режиме «М» (motion - движение), при котором движение отраженных ультразвуковых волн разворачивается во времени, что дает ложное двухмерное изображение, когда по горизонтали регистрируется истинный размер органа по пути распространения ультразвуковой волны, а по вертикали — время. Скорость развертки во времени и масштаб изображения на экране меняются произвольно.



Количество и качество отраженных волн обусловлено физическими процессами, протекающими при прохождении ультразвука через среду. Чем больше разница в акустическом сопротивлении сред, тем больше ультразвуковых волн отражается на границе их раздела. Поскольку акустическое сопротивление среды является функцией плотности среды, количество и качество отраженных ультразвуковых волн объективно передают детали строения внутренних органов и тканей в зависимости от их плотности.



С одной стороны, ввиду чрезвычайно большой разности в акустическом сопротивлении тканей и воздуха на границе раздела этих сред ультразвук практически весь отражается обратно, и поэтому получить информацию о тканях, лежащих за прослойкой воздуха, часто не представляется возможным. С другой стороны, наилучшие условия распространения ультразвука создают жидкости любого химического состава, и образования, наполненные жидкостью, визуализируются особенно легко.

При проведении УЗИ необходимо помнить о реверберации — появлении добавочного изображения на расстоянии, вдвое больше от истинного. В основе этого феномена лежит повторное отражение части воспринимаемых волн от поверхности датчика иди от границы полого органа, в результате чего ультразвуковая волна повторно совершает свой путь, что вызывает мнимое отражение. Недооценка этого феномена может привести к серьезным диагностическим ошибкам.

Частота ультразвука, применяемого с диагностической целью, находится в пределах 0,8—7 МГц, причем существует следующая закономерность: чем выше частота ультразвука, тем больше разрешающая способность- усиливается поглощение ультразвука тканями и соответственно падает проникающая способность. С уменьшением частоты ультразвука наблюдается обратная закономерность, поэтому для исследования близко расположенных объектов применяют более высокочастотные датчики (5—7 МГц), а для глубоко расположенных и больших по размерам органов приходится использовать низкочастотные датчики (2,5—3,5 МГц).

УЗИ проводят в затемненной комнате, так как при ярком освещении глаз человека не воспринимает серые тона на телевизионном экране. В зависимости от задач исследования выбирается тот или иной режим работы прибора. Для исключения прослойки воздуха между датчиком и телом больного кожу в области исследования покрывают иммерсионной средой.

Н.А. Лопаткин
Похожее