Потребности в кальции и витамине д у новорожденных детей

Физиологические аспекты участия кальция и витамина D в обменных процессах в организме настолько взаимосвязаны, что невозможно обсуждать эти нутриенты по отдельности. Знания об обмене кальция и витамина D важны для понимания этиологии ранней гипокальцие-мии недоношенных, остеопении недоношенных и обусловленного дефицитом витамина D рахита у детей старшего возраста.

Несмотря на значимость кальция для многих процессов, происходящих в организме, например мышечного сокращения, нейротранс-миссии и функции энзимов, наиболее важной функцией кальция является его участие в поддержке костной ткани. Так, 99% всего кальция находится в составе костной ткани, где он, соединяясь с фосфором, образует кристаллический гидроксиапатит. В сыворотке крови содержится менее 1% кальция. Из него 50% связано с альбумином сыворотки, 5% — с другими анионами (НСО3-, цитратом, РО4-) и 45% находится в метаболически активной форме (ионизированный кальций).

Ионизированный кальций не только играет роль внутриклеточного вторичного мессенджера, но и, что не менее валено, выполняет функцию внеклеточного первичного мессенджера. Открытие чувствительных к внеклеточному кальцию парных рецепторов G-протеина на главных клетках паращитовидных желез, клетках почечных канальцев, клетках костной и хрящевой ткани, плацентарных цитотрофо-бластах, а также интестинальных клетках ворсин отражает долгий путь изучения и открытия взаимодействий между этими тканями в системном гомеостазе кальция.

Видео: Яичная скорлупа – целитель 21 века КАЛЬЦИЙ из яичной шкорлупы

Индуцированные с помощью кальций-чувствительных рецепторов сигналы особым образом модулируют функции клеток, например секрецию паратиреоидного гормона паращитовидными железами и реабсорбцию кальция в почках.

Неудивительно, что кальций сыворотки находится под очень строгим контролем. Гомеостаз кальция в организме тщательно отлажен и включает как циркулирующие кальциотропные гормоны, так и чувствительные к внеклеточному кальцию рецепторы. У человека ген, регулирующий кальций, был открыт в составе 3-й хромосомы. Именно он определяет содержание кальция в сыворотке. Мутации этого гена нарушают регуляцию обмена кальция, что, в частности, обусловливает семейную гиперкальциемию с гиперкальциурией и тяжелый неонатальный первичный гиперпаратиреоидизм.

Видео: Жить здорово! Дефицит витамина D у детей и взрослых. (29.08.2016)

К кальциотропным гормонам относят 1,25-дигидроксивитамин D (1,25(OH)2D), паратиреоидный гормон, кальцитонин, пептид, связанный с паратиреоидным гормоном, гормон роста и разнообразные инсулиноподобные факторы роста. 1,25(OH)2D, являющийся на самом деле гормоном, а не витамином, представляет собой физиологически активную форму витамина D.



Витамин D3 (холекальциферол) может синтезироваться в коже из холестерола под воздействием ультрафиолетовых лучей. Витамин D3 содержится в относительно небольшом количестве пищевых продуктов (например, в рыбьем жире), но часто его специально добавляют в пищу. Когда холекальциферол попадает в кровь, он превращается в печени в 25-гидроксивитамин D (25(OH)D), основную циркулирующую форму витамина, по уровню которой судят об обеспеченности организма витамином D. Клетки почечных канальцев в последующем превращают 25(OH)D в 1,25(OH)2D.

Видео: ШДК: Водные виды спорта. Витамин D. Детство на острове Тенерифе - Доктор Комаровский

Механизм действия 1,25(OH)2D похож на таковой у всех стероидных гормонов. Он транспортируется в кровь в соединении с витамин D-связывающим белком. Попадая в цитоплазму клеток, 1,25(OH)2D самостоятельно отсоединяется от витамин D-связывающего белка и связывается с ядерным рецептором витамина D. Все ткани, которым необходим витамин D (кишечник, почки, костная ткань и др.), содержат цитоплазматический ядерный рецептор витамина D для 1,25(OH)2D, который затем присоединяется к ДНК в ядре для осуществления транскрипции гена и синтеза целого ряда витамин D-зависимых белков, включая кальцийсвязывающие белки.

Обмен кальция в организме
Схема гомеостаза кальция, демонстрирующая взаимодействия между кальцием, кальциотропными гормонами и системой органов.
1,25(OH)2D—1,25-дигидроксивитамин D;
25(OH)D—25-гидроксивитамин D;
ECF — эргокальциферол;
ПТГ — паратиреоидный гормон;
цАМФ — циклический аденозинмонофосфат.

Паратиреоидный гормон, состоящий из 84 аминокислот (белок, секретируемый главными клетками паращитовидных желез), в основном отвечает за поддержание уровня кальция в сыворотке. Функции этого гормона следующие:
•на уровне почек: подавление реабсорбции РО4 в проксимальных канальцах и повышение реабсорбции профильтрованного кальция посредством воздействия на циклический аденозинмонофосфат в дистальных канальцах- стимуляция 1-8-гидроксилирования 25(OH)D в физиологически активный l,25(OH)2D;
•в костной ткани: стимуляция резорбции кальция костной тканью. Кальцитонин является пептидом, состоящим из 32 аминокислот.

Он производится С-клетками щитовидной железы. Его функция заключается в снижении уровня кальция в сыворотке крови путем уменьшения резорбции кальция в кости, а также уменьшения резорбции кальция в почках, что ведет к кальциурии. Кальцитонин менее важен, чем паратиреоидный гормон, его врожденное отсутствие не приводит к серьезным нарушениям метаболизма кальция.

Потребность в кальции недоношенного новорожденного ребенка



Определение потребности в кальции у недоношенного ребенка основано на знаниях о процессе накопления кальция у плода с увеличением срока гестации.

В организме доношенного ребенка содержится 25—30 г кальция, что составляет 1% массы его тела. В течение III триместра беременности откладывается 70% этого кальция. Скорость отложения кальция в организме плода составляет 90-150 мг/кг/сут, достигая наибольшего значения 150 мг/кг/сут на сроке гестации 36-38 нед.

После рождения сложно достичь подобной скорости отложения кальция у недоношенного ребенка посредством его энтерального или парентерального введения. Учитывая существующие на сегодняшний день ограничения по количеству вводимого при полном парентеральном питании кальция, скорость ретенции кальция обычно не превышает 60 мг/кг/сут, что оказывает влияние на минеральный состав костной ткани у растущих недоношенных детей.

С введением энтерального кормления ведущую роль в накоплении кальция начинает играть его абсорбция в кишечнике. Несмотря на небольшое количество исследований обменных процессов у этой популяции новорожденных, известно, что абсорбция кальция возрастает по мере увеличения постконцептуального и постнатального возраста.

У растущих недоношенных детей абсорбция кальция составляет 50-80% от поступающего в организм количества. Это означает, что для того, чтобы соответствовать скорости отложения кальция во внутриутробном периоде (90-150 мг/кг/сут), поступление кальция должно составлять 120-200 мг/кг/сут.

У доношенного ребенка скорость накопления кальция в костной ткани составляет 60-140 мг/сут в течение первого года жизни. Основываясь на среднем содержании кальция в грудном молоке (26,4 мг/ дл), скорости ретенции кальция (61%) и среднесуточном потреблении грудного молока (780 мл), адекватное поступление кальция должно составлять 128 мг/сут.

Это то количество, которое дети грудного возраста вполне могут получить из грудного молока, а дети, находящиеся на искусственном вскармливании, даже с избытком получают кальций из смесей.

Потребность в витамине D недоношенного новорожденного ребенка

Сразу после рождения основным ресурсом витамина D является тот, который был получен ребенком во внутриутробном периоде от матери. Поскольку грудное молоко содержит незначительное количество витамина D, большое внимание уделяется дополнительному введению его как энтеральным, так и парентеральным путем. В США рекомендуемый прием витамина D для недоношенных и доношенных младенцев, получающих энтеральное питание, составляет 200—400 МЕ/сут. Если ребенок получает парентеральное питание, рекомендуемая доза составляет 40-200 МЕ/сут.

Источник: http://meduniver.com
Похожее