Транскрипция. Виды и типы рнк клеток
Сборка молекулы РНК из нуклеотидов происходит под действием РНК-полимеразы. Этот фермент представляет собой крупный белок, обладающий целым рядом свойств, необходимых на разных стадиях синтеза молекулы РНК.
1. На цепи ДНК в самом начале каждого гена лежит нуклеотидная последовательность, называемая промоутером. Фермент РНК-полимераза несет участки распознавания и комплементарного связывания с промоутером. Связывание данного фермента с этим участком необходимо для запуска сборки молекулы РНК.
2. После связывания с промоутером РНК-полимераза расплетает спираль ДНК на участке, занимающем примерно два витка, что приводит к расхождению цепей ДНК на этом участке.
3. РНК-полимераза начинает продвигаться по цепи ДНК, вызывая временное расплетание и расхождение двух ее цепей. По мере этого движения на каждой его стадии к концу растущей цепи РНК добавляется новый активированный нуклеотид. Этот процесс проходит следующим образом:
а) вначале между азотистым основанием концевого нуклеотида ДНК и азотистым основанием нуклеотида РНК, поступающего из кариоплазмы, образуется водородная связь;
б) затем РНК-полимераза последовательно отщепляет по два фосфата от каждого нуклеотида РНК, высвобождая при разрыве макроэргических фосфатных связей большое количество энергии, которая сразу идет на образование ковалентной связи между оставшимся фосфатом нуклеотида РНК и концевой рибозой растущей цепи РНК;
в) когда РНК-полимераза доходит по цепи ДНК до конца гена, она вступает во взаимодействие с последовательностью нуклеотидов, которую называют терминирующей последовательностью- в результате этого взаимодействия РНК-полимераза и новосинтезированная молекула РНК отрываются от цепи ДНК. После этого РНК-полимераза может вновь использоваться для синтеза новых молекул РНК;
г) слабые водородные связи между новосинтезированной молекулой РНК и матрицей ДНК рвутся, а связь между комплементарными цепями ДНК восстанавливается, поскольку сродство между ними выше, чем между ДНК и РНК. Таким образом, цепь РНК отделяется от ДНК, оставаясь пока в кариоплазме.
Таким образом генетический код, «записанный» на ДНК, комплементарно переносится на цепь РНК. При этом рибонуклеотиды могут образовывать с дезоксирибонуклеотидами только следующие комбинации.
Виды и типы РНК клеток
Существуют три типа РНК, каждый из которых выполняет свою особую роль в синтезе белка.
1. Матричная РНК переносит генетический код из ядра в цитоплазму, определяя таким образом синтез разнообразных белков.
2. Транспортная РНК переносит активированные аминокислоты к рибосомам для синтеза полипептидных молекул.
3. Рибосомная РНК в комплексе примерно с 75 разными белками формирует рибосомы — клеточные органеллы, на которых происходит сборка полипептидных молекул.
Матричная РНК представляет собой длинную одноцепочечную молекулу, присутствующую в цитоплазме. Эта молекула РНК содержит от нескольких сотен до нескольких тысяч нуклео-тидов РНК, образующих кодоны, строго комплементарные триплетам ДНК.
Еще один тип РНК, играющий важнейшую роль в синтезе белка, называют транспортной РНК, поскольку он транспортирует аминокислоты к строящейся молекуле белка. Каждая транспортная РНК специфически связывается только с одной из 20 аминокислот, составляющих белковые молекулы. Транспортные РНК действуют как переносчики специфических аминокислот, доставляя их к рибосомам, на которых происходит сборка полипептидных молекул.
Каждая специфическая транспортная РНК распознает «свой» кодон матричной РНК, прикрепившейся к рибосоме, и доставляет соответствующую аминокислоту на соответствующую позицию в синтезируемой полипептидной цепи.
Цепь транспортной РНК гораздо короче матричной РНК, содержит всего около 80 нуклеотидов и упакована в форме клеверного листа. На одном конце транспортной РНК всегда находится аденозинмонофосфат (АМФ), к которому через гидроксильную группу рибозы прикрепляется транспортируемая аминокислота.
Транспортные РНК служат для прикрепления специфических аминокислот к строящейся полипептидной молекуле, поэтому необходимо, чтобы каждая транспортная РНК обладала специфичностью и в отношении соответствующих кодонов матричной РНК. Код, посредством которого транспортная РНК распознает соответствующий кодон на матричной РНК, также является триплетом и его называют антикодоном. Антикодон располагается примерно посередине молекулы транспортной РНК.
Во время синтеза белка азотистые основания антикодона транспортной РНК прикрепляются с помощью водородных связей к азотистым основаниям кодона матричной РНК. Таким образом, на матричной РНК выстраиваются в определенном порядке одна за другой различные аминокислоты, формируя соответствующую аминокислотную последовательность синтезируемого белка.
Источник: http://meduniver.com