Альвеолярная вентиляция. Учет легочной и альвеолярной вентиляции

Наиболее широко распространенные респираторные нарушения при подводных погружениях связаны с недостаточной вентиляцией легких, приводящей к повышению давления двуокиси углерода в альвеолах РаСОз и последующему изменению напряжения двуокиси углерода в артериальной крови (Рас02).

Целесообразно считать эти объемы газов не как поступающие в альвеолярное пространство, а как покидающие его. Можно также зрительно представить альвеолярное пространство как абстрактный бокс, не имеющий определенных размеров, с поступающим в него потоком С02 при заданной скорости на одном конце и потоком свежего воздуха, поступающим при другой скорости в этот же бокс на другом конце. Двуокись углерода и свежий воздух полностью перемешиваются в боксе и выходят из него через отдельное отверстие. Критическими объемами являются относительные объемы (в единицу времени) поступающей в бокс двуокиси углерода и покидающего бокс смешанного газа.

Допустим, что входящий поток С02 имеет скорость 1 л/мин, а выходящий поток смешанного с двуокисью углерода свежего воздуха —20 л/мин (для обоих газовых объемов сделана поправка на одни и те же условия среды). Все поступающее количество двуокиси углерода должно удаляться из бокса. Следовательно, фракционная концентрация С02 в потоке выходящего газа должна составлять 1/20 или 0,05, что составляет 5%. Парциальное давление двуокиси углерода в этой газовой смеси будет равно 0,05Х (Рв—47).



Такая приближенная модель служит удобным изображением процессов альвеолярной вентиляции и разбавления двуокиси углерода. Входящий поток С02 является минутным объемом выделения двуокиси углерода (Vco2). Выходящий поток «смешанного» газа представляет собой минутный объем альвеолярной вентиляции (VA). Фракция двуокиси углерода в выходящей или все еще находящейся в боксе газовой смеси представлена величиной FACO2. С точки зрения приведения легочной вентиляции к минутному объему неважно, что альвеолярный обмен в действительности при вдохе и выдохе осуществляется по одному и тому же пути, а не является постоянным однонаправленным потоком. Модель можно также представить в виде кузнечных мехов. Основная зависимость выражается формулой: FACO2 = VCO2/Va.

альвеолярная вентиляция


Следует, однако, обратить внимание на то, что формула справедлива, если Vco2 и VA выражены в одинаковых единицах и скорректированы на одни и те же условия среды.
Различные поправки, обычно применяемые в отношении Vco2 и Va, особенно важны для показателя РаСО2. в условиях повышенного давления. Коррекция Vco2 и Vo2c учетом условий STPD является необходимой, так как оба минутных объема газов связаны с химическими реакциями, происходящими на молекулярном уровне. Скорректированные по STPD, Vo2 и Vco2 пропорциональны числу задействованных молекул и остаются для данного уровня физической активности по существу такими же независимо от колебаний давления окружающей среды.

Величины легочной и альвеолярной вентиляции логично скорректировать по BTPS, т. е. учесть действительно существующие условия в легких в момент измерения. Для любого конкретного уровня физического напряжения величины вентиляции сохраняются почти такими же (когда измеряются при: действующем давлении) в широком диапазоне давления окружающей среды. До вмешательства в процесс посторонних факторов у водолаза, выполняющего один и тот же объем работы отмечаются приблизительно одинаковые по объему и частоте (в минуту) циклы дыхания, как при абсолютном давлении 3 кгс/см2, так и нормальном атмосферном давлении.

Причину именно такого учета величины легочной и альвеолярной вентиляции нетрудно понять при помощи модели. С физиологических позиций при изменении давления окружающей среды РАСО3 должно оставаться постоянным. Однако возникает вопрос — каким образом можно поместить бокс, например, под абсолютное давление 10 кгс/см2 без изменения РаСО2. Из уравнения (9) следует, что если Paq02. должно остаться прежним при увеличении Рв в 10 раз, то Fac02. должно снизиться приблизительно до 1/10 от первоначальной величины.

Когда в боксе создастся давление в 10 кгс/см2, то Vco2, составляющий 1 л/мин и содержащий прежнее число молекул при STPD, будет иметь реальный объем, приблизительно равный 0,1 л/мин. Если минутный объем альвеолярной вентиляции Va поддерживается на уровне 20 л/мин (измеренный при давлении 10 кгс/см2), то FAСО2 будет равно 0,1/20, или 0,005, что составляет 1/10 от величины, имевшей место при нормальном атмосферном давлении. Таким образом, РасО2 остается почти постоянным.

Источник: http://meduniver.com
Похожее