Сопротивление дыхательных путей. Сопротивление легких. Воздушный поток. Ламинарный поток. Турбулентный поток.

Сопротивление дыхательных путей. Сопротивление легких. Воздушный поток. Ламинарный поток. Турбулентный поток

Растяжимость легких количественно характеризует растяжимость легочной ткани в любой момент изменения их объема в течение фазы вдоха и выдоха. Поэтому растяжимость представляет собой статическую характеристику эластических свойств легочной ткани. Однако во время дыхания возникает сопротивление движению аппарата внешнего дыхания, обусловливающее его динамические характеристики, среди которых наибольшее значение имеет сопротивление потоку воздуха при его движении через дыхательные пути легких.



На движение воздуха из внешней среды через дыхательные пути к альвеолам и в обратном направлении оказывает влияние градиент давления: при этом воздух движется из области высокого давления в область низкого давления. При вдохе давление воздуха в альвеолярном пространстве меньше, чем атмосферное, а при выдохе — наоборот. Сопротивление дыхательных путей потоку воздуха зависит от градиента давления между полостью рта и альвеолярным пространством.

Сопротивление дыхательных путей. Сопротивление легких. Воздушный поток. Ламинарный поток. Турбулентный поток.


Поток воздуха через дыхательные пути может быть ламинарным, турбулентным и переходным между этими типами. Воздух движется в дыхательных путях, в основном, ламинарным потоком, скорость которого выше в центре этих трубок и меньше вблизи их стенок. При ламинарном потоке воздуха его скорость линейно зависит от градиента давления вдоль дыхательных путей. В местах деления дыхательных путей (бифуркации) ламинарный поток воздуха переходит в турбулентный. При возникновении турбулентного потока в дыхательных путях возникает дыхательный шум, который может выслушиваться в легких с помощью стетоскопа. Сопротивление ламинарному потоку газа в трубе обусловлено ее диаметром. Поэтому, согласно закону Пуа-зейля величина сопротивления дыхательных путей потоку воздуха пропорциональна их диаметру, возведенному в четвертую степень. Поскольку сопротивление дыхательных путей находится в обратной зависимости от их диаметра в четвертой степени, то этот показатель самым существенным образом зависит от изменений диаметра воздухоносных путей, вызванных, например, выделением в них слизи из слизистой оболочки или сужением просвета бронхов. Общий диаметр сечения дыхательных путей возрастает в направлении от трахеи к периферии легкого и становится максимально большим в терминальных дыхательных путях, что вызывает резкое снижение сопротивления потоку воздуха и его скорости в этих отделах легких. Так, линейная скорость потока вдыхаемого воздуха в трахее и главных бронхах равна примерно 100 см/с. На границе воздухопроводящей и переходной зон дыхательных путей линейная скорость воздушного потока составляет около 1 см/с, в дыхательных бронхах она снижается до 0,2 см/с, а в альвеолярных ходах и мешочках — до 0,02 см/с. Столь низкая скорость воздушного потока в альвеолярных ходах и мешочках обусловливает в них незначительное сопротивление движущемуся воздуху и не сопровождается значимыми затратами энергии мышечного сокращения.

Напротив, наибольшее сопротивление дыхательных путей потоку воздуха возникает на уровне сегментарных бронхов в связи с наличием в их слизистой оболочке секреторного эпителия и хорошо развитого гладкомышечного слоя, т. е. факторов, которые в наибольшей степени влияют как на диаметр воздухоносных путей, так и на сопротивление в них потоку воздуха. В преодолении этого сопротивления заключается одна из функций дыхательных мышц.

Источник: http://meduniver.com
Похожее